Mlrengine

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search

Purpose

Multiple Linear Regression computational engine.

Synopsis

reg = mlrengine(x,y,options)

Description

Inputs are an x-block x, y-block y and optional options structure.

Output is the matrix of regression vectors reg.

Options

options = a structure array with the following fields.

  • algorithm: [ {'leastsquares'} | 'ridge' | 'ridge_hkb' | 'optimized_ridge' | 'optimized_lasso' | 'elasticnet' ] Governs the level of regularization used when calculating the regression vector.
  • condmax: [{[ ]}] Value for maximum condition number. Default value = [] leads to MLR calculation at full rank. Any value > 0 leads to truncation of factors based upon SVD until the condition number is less than the specified value. Used only for algorithm 'leastsquares'.
  • ridge: [ {1} ] Scalar value for ridge parameter for algorithm 'ridge'.
  • optimized_ridge: [{1.0000e-05}] Scalar value for ridge parameter θ for algorithms 'optimized_ridge' or 'elasticnet'.
  • optimized_lasso: [{1.0000e-05}] Scalar value for ridge parameter θ for algorithms 'optimized_lasso' or 'elasticnet'.


See Also

mlr, analysis, pcr, pls