Mncn: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(Importing text file)
imported>Jeremy
No edit summary
Line 1: Line 1:
===Purpose===
===Purpose===


Line 6: Line 5:
===Synopsis===
===Synopsis===


:[mcx,mx] = mncn(x,''options'')
:[mcx,mx,msg] = mncn(x,''options'')


===Description===
===Description===


MNCN mean centers a matrix x and returns a matrix mcx with mean zero columns and a vector of means mx used to center the data.
MNCN mean centers a matrix x and returns a matrix mcx with mean zero columns and a vector of means mx used to center the data. Optional input options is discussed below.
 
The output <tt>msg</tt> returns any warning messages.
 
===Options ===
 
''options'' = a structure array with the following fields.
 
* '''display''': [ {'off'} | 'on'] Governs screen display.
* '''matrix_threshold''': [.15] Error threshold based on fraction of missing data in whole matrix.
* '''column_threshold''': [.25] Error threshold based on fraction of missing data in single column.
 


===See Also===
===See Also===


[[auto]], [[rescale]], [[scale]]
[[auto]], [[rescale]], [[scale]]

Revision as of 13:19, 8 January 2009

Purpose

Mean center data matrices.

Synopsis

[mcx,mx,msg] = mncn(x,options)

Description

MNCN mean centers a matrix x and returns a matrix mcx with mean zero columns and a vector of means mx used to center the data. Optional input options is discussed below.

The output msg returns any warning messages.

Options

options = a structure array with the following fields.

  • display: [ {'off'} | 'on'] Governs screen display.
  • matrix_threshold: [.15] Error threshold based on fraction of missing data in whole matrix.
  • column_threshold: [.25] Error threshold based on fraction of missing data in single column.


See Also

auto, rescale, scale