Doeeffectsplot: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Scott
(Created page with " ===Purpose=== Create main effect or interaction plot, incl LSD bars. ===Synopsis=== : doeeffectsplot(doe, y, icol, alpha) ===Description=== Main & Interaction Effects...")
 
imported>Jeremy
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
===Purpose===
===Purpose===
Create main effect or interaction plot, incl LSD bars.
Create main effect or interaction plot, incl LSD bars.
===Synopsis===
===Synopsis===
: doeeffectsplot(doe, y, icol, alpha)
: doeeffectsplot(doe, y, icol, alpha)
 
: doeeffectsplot(doe, y, icol, alpha, options)
 
===Description===
===Description===
 
Main & Interaction Effects plots which contain Fisher's Least Significant Difference bars around the mean effect values.
 
 
Main & Interaction Effects plots which contain Fisher's Least Significant
% Difference bars around the mean effect values.


====Inputs====
====Inputs====
* '''dat''' = Data table where columns are factors.
*'''doe''' = DOE dataset object.
*'''icol''' = user selected doe column index. DOE columns are arranged as factors first, then interactions.
*:For example: <tt>F1, F2, F3, F1xF2, F1xF3, F2xF3</tt>
*'''alpha'''  = 0.05 for two-sided critical region.
*'''y''' = experimentally measured response values


====Optional Inputs====
*'''options''' = structure array with the following fields:
**'''display''': [ 'off' | {'on'} ]      governs level of display to command window.


===Example===
Use [[doegui]] or [[doegen]] to create a doe object, for example with 3 factors (with 2 or more levels) and including 2 term interactions. Then run the following to set up:
<pre>icol=1;
alpha = 0.05;
y = rand(size(doe,1),1);          % create y, some expt result values
[doe.data(:,icol) y]              % view Factor 1 and y values
%Add the following to make significant difference between F1 groups
y  = y + doe.data(:,icol);
doeeffectsplot(doe, y, icol, alpha)
</pre>
===See Also===
===See Also===


 
[[doegen]], [[doegui]]
[[anova1w]], [[ftest]], [[statdemo]]
 
%DOEEFFECTSPLOT Create main effect or interaction plot, incl LSD bars.
% Main & Interaction Effects plots which contain Fisher's Least Significant
% Difference bars around the mean effect values.
%INPUTS:
%  doe    = DOE dataset object.
%  icol  = user selected doe column index. DOE columns are arranged as:
%            Factors first, then interactions.
%            For example: F1, F2, F3, F1xF2, F1xF3, F2xF3
%  alpha  = 0.05 for two-sided critical region
%  y      = experimentally measured response values
%
% Example:
%  Use 'doegui' to create a doe object, for example with 3 factors (with 2
%  or more levels) and including 2 term interactions.
%  Then run the following to set up:
%  icol=1;
%  alpha = 0.05;
%  y = rand(size(doe,1),1);          % create y, some expt result values
%  [doe.data(:,icol) y]               % view Factor 1 and y values
%  Add the following to make significant difference between F1 groups
%  y  = y + doe.data(:,icol);
%
%I/O: doeeffectsplot(doe, y, icol, alpha)
%
%See also: DOEGEN, DOEGUI

Latest revision as of 13:08, 22 February 2013

Purpose

Create main effect or interaction plot, incl LSD bars.

Synopsis

doeeffectsplot(doe, y, icol, alpha)
doeeffectsplot(doe, y, icol, alpha, options)

Description

Main & Interaction Effects plots which contain Fisher's Least Significant Difference bars around the mean effect values.

Inputs

  • doe = DOE dataset object.
  • icol = user selected doe column index. DOE columns are arranged as factors first, then interactions.
    For example: F1, F2, F3, F1xF2, F1xF3, F2xF3
  • alpha = 0.05 for two-sided critical region.
  • y = experimentally measured response values

Optional Inputs

  • options = structure array with the following fields:
    • display: [ 'off' | {'on'} ] governs level of display to command window.

Example

Use doegui or doegen to create a doe object, for example with 3 factors (with 2 or more levels) and including 2 term interactions. Then run the following to set up:

icol=1;
alpha = 0.05;
y = rand(size(doe,1),1);           % create y, some expt result values 
[doe.data(:,icol) y]               % view Factor 1 and y values
%Add the following to make significant difference between F1 groups
y  = y + doe.data(:,icol);
doeeffectsplot(doe, y, icol, alpha)

See Also

doegen, doegui