Constrainfit
Jump to navigation
Jump to search
Purpose
Finds A minimizing ||X-A*B'|| subject to constraints, given the small matrices (X ' B) and (B ' B)
Synopsis
- [A]=constrainfit(XB,BtB,Aold); % Unconstrained
- opt = constrainfit('options');
- opt.type='nonnegativity';
- [A]=constrainfit(XB,BtB,Aold,opt); % Nonnegative
- opt = constrainfit('options');
- opt.type='columnwise';
- opt.columnconstraints={0;2;0}; % If three columns
- [A]=constrainfit(XB,BtB,Aold,opt); % Second column unimodal
Description
CONSTRAINTFIT solves the least squares problem behind bilinear, trilinear and other multilinear models. Assuming a model X = A*B ' and assuming that X and B are known, the least squares estimate of A is obtained. Rather than using X and B this algorithm uses the cross product matrices (X ' B) and (B ' B) which are generally smaller and less memory-demanding especially in multi-way models.
Inputs
- first = first input is this.
Optional Inputs
- second = optional second input is this.
Outputs
- firstout = first output is this.
Options
options = a structure array with the following fields:
- plots: [ {'none'} | 'final' ] governs plotting of results, and
- order: positive integer for polynomial order {default = 1}.
Example
>>This is an example Error: does not exist