Software Development Kit (SDK)
Solo_Predictor Software Development Kit (SDK) Overview
In order to facilitate communication with and operations in Solo_Predictor from external environments, Eigenvector Research provides a software development kit (SDK) for common application languages. At this time the SDK is available in Python. Matlab, Java, and C# ports are planned for later release. Contact the help desk at helpdesk@eigenvector.com to obtain the SDK package.
The SDK includes a number of methods that cover a signification portion of common usage for deploying an existing model with new data. A description of the methods - inputs, outputs, options - may be found in the above table. These methods will, for the most part, be common across all platforms and exceptions will be clearly noted.
SDK Methods
method | function | arguments | Python returns | MATLAB returns | C# returns |
---|---|---|---|---|---|
getLastResponse() |
last response returned by Solo/Solo_Predictor, typically in XML format | none | string(plain or XML) | string(plain or XML) | string(plain or XML) |
getLastError() |
last error generated in operations | none | string(plain) | string(plain) | string(plain) |
clearVariables() |
clear all workspace variables | none | Boolean | Boolean | Boolean |
listVariables() |
list of workspace variables | none | list |
string array |
string[]
|
applyModel() |
apply workspace variable mdl to workspace variable data |
none | Boolean | Boolean | Boolean |
setDataFile(pathString) |
load specified file (method argument) and convert to workspace variable data |
string - path to data file | Boolean | Boolean | Boolean |
setModelFile(pathString) |
load specified file (method argument) and convert to workspace variable mdl |
string - path to model file (.mat extension required) | Boolean | Boolean | Boolean |
setOutputFormat(formatString) |
specify output format for prediction results - choice of field->value object or XML |
string Python : choice of "dict" or "xml" (case insensitive) MATLAB : choice of "struct", "containers.Map", or "xml" C# : choice of "dict" or "xml" |
Boolean | Boolean | Boolean |
setPort(portValue) |
specify communication port with Solo/Solo_Predictor | integer or string (which can be converted to integer) in the range of 1024:65535; default value = 2211 | Boolean | Boolean | Boolean |
setIPAddress(IPAddressString) |
specify IP address to communicate with Solo/Solo_Predictor | string with valid value for IP address; default value is 127.0.0.1 | Boolean | Boolean | Boolean |
getDataFile() |
return data file set by setDataFile |
none | string(plain) | string(plain) | string(plain) |
getModelFile() |
return model file set by setModelFile |
none | string(plain) | string(plain) | string(plain) |
getPort() |
return port value set by setPort /default value |
none | integer | integer | integer |
getIPAddress() |
return IP address set by setIPAddress /default value |
none | string(plain) | string(plain) | string(plain) |
getOutputFormat() |
return output format for model predictions as set by setOutputFormat /default value |
none | string(plain) | string(plain) | string(plain) |
getPredictionResults() |
return model prediction values as either field->value object or XML formatted dataset object |
none | string(XML) or dict ; empty string if error encountered |
string(XML), struct , or containers.Map |
string(XML) or Dictionary
|
getModelInfo() |
return info from loaded model | none | string(plain) | string(plain) | string(plain) |
getPredictionResultsVarNames() |
fields of field->value object for prediction outputs |
none | list |
string array |
string[]
|
getVersion(modeString) |
returns version information for Solo_Predictor | string with value of "terse" or "full"; default value (no input) is "terse" | string(plain) or dict |
string(plain) or containers.Map |
string(plain) or Dictionary
|
runIncludeFile(pathString) |
execute content of text file pathString containing valid Solo scripting commands | string to text file containing valid Solo scripting commands | string(XML) | string(XML) | string(XML) |
getVersionSDK() |
return current version of SDK | none | string(plain) | string(plain) | string(plain) |
A number of the methods return Boolean values indicating success or failure at completing the desired operation. When a return value of False
is obtained, detail surrounding the nature of the error may be found from the .getLastError()
method. It's important to note that communication errors with Solo_Predictor are not handled by the SDK. As such, your code for communicating with Solo_Predictor should include the platform-appropriate error-trapping procedures for such instances.
Supported Models
The following model types are supported by the SDK:
- PCA
- MCR
- Regression models
- PLS
- PCR
- LWR
- SVM-R
- MLR
- CLS
- ANN
- XGB
- Classification models
- PLSDA
- SIMCA
- SVM-C
- ANNDA
- XGBDA
- LREGDA
- PARAFAC
Solo_Predictor Requirements
The target Solo_Predictor must be running and have had its default.xml file modified so its "keywordonly" tag set = 0. See keywordonly
Python Requirements
The Python version of the SDK has been tested using Python versions 3.7 and 2.7. The following table lists the versions of libraries used with the tested versions of Python:
library | Python 3.7 | Python 2.7 |
requests |
2.24 | 2.24 |
bs4 |
4.9.1 | 4.9.1 |
numpy |
1.19.2 | 1.16.6 |
lxml |
4.5.2 | 4.5.2 |
C# Requirements
library | Version |
HtmlAgilityPack |
1.11 |
Example
A working example is provided below with comments for many of the steps.
Configuration
Python
from evrisdk import EvriSdk curInstance = EvriSdk() curInstance.setIPAddress("127.0.0.1") curInstance.setPort(2211)
MATLAB
curInstance = evrisdk() curInstance.setIPAddress("127.0.0.1") curInstance.setPort(2211)
C#
using evrisdk; // use in header // then put the following in class instantiation EvriSdk curInstance = new EvriSdk(); curInstance.setIPAddress("127.0.0.1"); curInstance.setPort(2211);
After creating an instance of the EvriSdk
class, the next two lines set the IP address of the computer running Solo_Predictor (here using the localhost
address) and the port. The latter may be configured with the argument as either an integer or a string. Note that these lines are somewhat redundant as the values provided are the default ones.
Solo_Predictor Workspace
retVal = curInstance.clearVariables() variableList = curInstance.listVariables()
The .clearVariables()
method will clear the Solo_Predictor workspace with a Boolean return indicating the success or failure of the operation. Verification of this step is accomplished from the .listVariables()
method.
Loading Data and Model
The following code segment will a) load a data file, b) load a model file, c) get a list of the prediction outputs from the model, and d) return information on the model (model type, date constructed, etc.):
retVal = curInstance.setDataFile(fullPathToDataFile) retVal = curInstance.setModelFile(fullPathToModelFile) predVarList = curInstance.getPredictionResultsVarNames() modelInfo = curInstance.getModelInfo()
C#
Make sure to have the data type of the returned variables:
bool retVal = curInstance.setDataFile(fullPathToDataFile) bool retVal = curInstance.setModelFile(fullPathToModelFile) var predVarList = curInstance.getPredictionResultsVarNames() string modelInfo = curInstance.getModelInfo()
A few comments are in order:
- data may be imported from any of the files supported by Solo_Predictor; see this page for importing data into Solo_Predictor
- if data is imported from a Matlab file, the file may contain only one variable (at this time the SDK does not support importing specified variables from a Matlab file)
- a Matlab file (file extension:
.mat
) is expected for loading a model file. Any other extension will result in an error- currently all EVRI model types are supported by the
.setModelFile
method except for calibration transfer and hierarchical models
- currently all EVRI model types are supported by the
- the Python
list
output will contain the variables generated from frommodel.plotscores(psops)
, wherepsops
is a structure created from
psops = plotscores('options');
psops.reducedstats = {'q' 't2'};
Apply Model and Return Results
Applying the model to the data and reviewing the outputs with some error trapping in the event the model application fails:
Python
retVal = curInstance.applyModel() if retVal: curInstance.setOutputFormat("dict") predResults = curInstance.getPredictionResults() for key in predResults: print(key, "=>", res[key]) else: print(curInstance.returnLastError())
In the above, each value of res[key]
will be a numpy array
containing as many elements as there are samples in the data which has been loaded.
MATLAB
The following code assumes the output format is containers.Map
.
retVal = curInstance.applyModel(); if retVal curInstance.setOutputFormat("containers.Map"); predResults = curInstance.getPredictionResults(); fnames = keys(predResults); for i=1:length(fnames) disp([fnames{i} "=>", num2str(predResults(fnames{i}))]); end else disp(curInstance.returnLastError()) end
C#
The following code assumes the output format is dict
.
bool retVal = curInstance.applyModel(); if (retVal) { curInstance.setOutputFormat("dict"); var pred = curInstance.getPredictionResults(); foreach (var kvp in pred) { Console.WriteLine("Key = {0}, Value = {1}", kvp.Key, string.Join(", ",kvp.Value)); Console.WriteLine(); } } else { Console.WriteLine(curInstance.returnLastError()) }
To look at the contents of the workspace:
variableList = curInstance.listVariables()
IF XML output format is specified - curInstance.setOutputFormat("xml")
- then the variable predResults
will be an XML formatted string of the dataset
object output. As an example, when applying a PCA model built in the arch
demo dataset using 3 PCs and applying it to a test sample, specifying XML format results gives:
<response> <result class="dataset"> <name class="string" /> <type class="string">data</type> <author class="string" /> <date class="numeric" size="[1,6]">2020,9,3,14,47,53.553401</date> <moddate class="numeric" size="[1,6]">2020,9,3,14,47,53.593668</moddate> <imagesize class="numeric" size="[0,0]" /> <imagemode class="numeric" size="[0,0]" /> <data class="numeric" size="[1,8]">-0.00223280606154,-0.00145155625614,-0.00357717299812,9.42744403283e-05,1.63676200186e-05,5.71331078063e-05,1.91433195948e-06,0.847852727433</data> <label class="cell" size="[2,1]"> <tr> <td class="string" /> </tr> <tr> <td class="string"> <sr>Scores on PC 1 </sr> <sr>Scores on PC 2 </sr> <sr>Scores on PC 3 </sr> <sr>Q Residuals </sr> <sr>Hotelling T^2 </sr> <sr>Q Residuals Reduced </sr> <sr>Hotelling T^2 Reduced</sr> <sr>KNN Score Distance </sr> </td> </tr> </label> <labelname class="cell" size="[2,1]"> <tr> <td class="string" /> </tr> <tr> <td class="string" /> </tr> </labelname> <axisscale class="cell" size="[2,1]"> . . .
By contrast, specifying Python dict
returns the following:
{'KNN Score Distance': array([0.84785273]), 'Hotelling T^2 Reduced': array([1.91433196e-06]), 'Q Residuals': array([9.42744403e-05]), 'Scores on PC 1': array([-0.00223281]), 'Scores on PC 3': array([-0.00357717]), 'Scores on PC 2': array([-0.00145156]), 'Q Residuals Reduced': array([5.71331078e-05]), 'Hotelling T^2': array([1.636762e-05])}
The latter format provides only numerical results and the appropriate tags, in this case, the keys
of the Python dict
. The advantage of the former is that any metadata associated with mode 1 of the loaded data - labels, classes, axis scales - is copied to the prediction results output. However, parsing of the XML output falls to the end user.
Output formats containers.Map
or struct
for Matlab, and dict
for C# will generate similar results as what is shown above.
.runIncludeFile Method
For more advanced operations, a text file containing valid Solo_Predictor scripting commands may be used with the .runIncludeMethod
. As an example,
retVal = curInstance.runIncludeFile(FullPathToIncludeScript)
returns
<response> <result class="numeric" size="[1,3]">-0.00223280606154,-0.00145155625614,-0.00357717299812</result> <error class="string" /> <date class="string">Thu 03 Sep 2020 15:25:52</date> </response>
for the following commands contained within the script file:
:clear myMdl='FullPathToModelFile'; myData='FullPathToDataFile'; myPred=myMdl|myData; myPred.scores;
As previously, parsing of the XML output is the responsibility of the end user.