Batchmaturity
Jump to navigation
Jump to search
Purpose
Batch process model and monitoring.
Synopsis
- model = batchmaturity(x,ncomp_pca,options);
- model = batchmaturity(x,y,ncomp_pca,options);
- model = batchmaturity(x,y,ncomp_pca,ncomp_reg,options);
- pred = batchmaturity(x,model,options);
- pred = batchmaturity(x,model);
Description
Batch process model and monitoring.
Inputs
- x = X-block (2-way array class "double" or "dataset").
- y = Y-block (vector class "double" or "dataset").
- ncomp_pca = Number of components to to be calculated in PCA model (positive integer scalar).
- ncomp_reg = Number of latent variables for regression method.
Outputs
- model = standard model structure containing the PCA and Regression model (See MODELSTRUCT).
- pred = prediction structure contains the scores from PCA model for the input test data as pred.t.
Options
options = a structure array with the following fields:
- regression_method : [ {'pls'} ] A string indicating type of regression method to use. Currently, only 'pls' is supported.
- preprocessing : { [] } preprocessing structure goes to both PCA and PLS. PLS Y-block preprocessing will always be autoscale.
- zerooffsety : [ 0 | {1}] transform y resetting to zero per batch
- stretchy : [ 0 | {1}] transform y to have range=100 per batch
- cl : [ 0.90 ] Confidence limit (2-sided) for moving limits (defined as 1 - Expected fraction of outliers.)
- nearestpts : [{25}] number nearby scores used in getting limits
- nsmooth : [{25}] number points (odd) used in savgol smoothing
- bmlookuppts : [{1001}] number of equi-spaced points in bm lookup table
- plots : [ 'none' | 'detailed' | {'final'} ] governs production of plots when model is built. 'final' shows standard scores and loadings plots. 'detailed' gives individual scores plots with limits for all PCs.
- waitbar : [ 'off' | {'auto'} ] governs display of waitbar when calculating confidence limits ('auto' shows waitbar only when the calculation will take longer than 15 seconds)