Peaksigmoid: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Mathias
imported>Mathias
Line 18: Line 18:




 
* '''y(1) ''' = <math> {{x}_{1}} \left( \frac{1-{{\operatorname{e}}^{-z}}}{{ 1 }+{{\operatorname{e}}^{-z}}} \right)</math>
 
<math>\sqrt{1-e^2}</math>
 
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{x_{3}^{2}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+x_{3}^{2}} \right] \right]</math>
 
 
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( {1}+{{x}_{2}} \right)}^{2}}+x_{3}^{2}} \right] \right]</math>
 
 
 
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{x_{3}^{2}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+1} \right] \right]</math>
 
 
 
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[\frac{{{\operatorname{e}}^{-z}}}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+{{\operatorname{e}}^{-z}}} \right] \right]</math>
 
 
 
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+{{\operatorname{e}}^{-z}}} \right] \right]</math>
 
 
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{{{\operatorname{e}}^{-z}}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+{{\operatorname{e}}^{-z}}} \right] \right]</math>
 
 
* '''y(1) ''' =


* '''y(2)  '''  = <math>{\operatorname{d}\!y\over\operatorname{d}\!{x}_{i}}</math>
* '''y(2)  '''  = <math>{\operatorname{d}\!y\over\operatorname{d}\!{x}_{i}}</math>


* ''' y(3)  '''  = <math>{\operatorname{d^2}\!y\over\operatorname{d}\!{{x}_{i}}^{2}}</math>
* ''' y(3)  '''  = <math>{\operatorname{d^2}\!y\over\operatorname{d}\!{{x}_{i}}^{2}}</math>

Revision as of 11:57, 4 August 2016

Purpose

Outputs a sigmoid function.


Synopsis

[y,y1,y2] = peaksigmoid(x,ax)


Inputs

  • x = 3 element vector where
  • x(1) = coefficient
  • x(2) = offset
  • x(3) = decay constant

Outputs

  • y(1) =
  • y(2) =
  • y(3) =