Cov cv: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Donal
imported>Donal
No edit summary
Line 26: Line 26:
* '''ccov''' = the regularized (inverse and/or sqrt) covariance.
* '''ccov''' = the regularized (inverse and/or sqrt) covariance.
* '''results''' = a structure array with the following fields
* '''results''' = a structure array with the following fields
===Options===
''options'' =  a structure array with the following fields:
* '''display''': [ 'off' | {'on'} ], governs level of display to command window,
* '''plots''': [ 'none' | {'final'} ], governs level of plotting.
* '''condmax''': {1e4} maximum regularization (condmax>1). This is the maximum condition number for (ccov).
* '''inverse''': [ {'yes'} | 'no' ] If set to 'yes' {default} the inverse covariance matrix is estimated. If set to 'no' the output (ccov) is a regularized covariance matrix.     
* '''sqrt''': [ {'no'} | 'yes' ], governs if the output is sqrt of the cov.
* '''algorithm''': [ 2 ], regularization method where ac = S(1)/options.condmax
algorithm = 1: results.alpha = (ac./(ac+S))*ac ;
algorithm = 2: results.alpha = (ac^2./(ac^2+S.^2))*ac ;
algorithm = 3: results.alpha = ac*ones(1,length(S)) ;


===Example===
===Example===

Revision as of 16:36, 2 September 2010

Purpose

Estimation of a regularized inverse covariance matrix.

For (x) M by N, COV_CV estimates a regularized inverse of x'*x/(M-1).

If [V,S] = svd(x'*x/(M-1)), and S = diag(S); then the regularized inverse takes the form V*diag(1./(S+alpha))*V'.

The 1 by N vector alpha is output in (results.alpha) [see options.algorithm].


Synopsis

[ccov,results] = cov_cv(x,options);

Inputs

  • x = X-block class "double" or "dataset".

Optional Inputs

  • options = structure array with the following fields discussed below.

Outputs

  • ccov = the regularized (inverse and/or sqrt) covariance.
  • results = a structure array with the following fields

Options

options = a structure array with the following fields:

  • display: [ 'off' | {'on'} ], governs level of display to command window,
  • plots: [ 'none' | {'final'} ], governs level of plotting.
  • condmax: {1e4} maximum regularization (condmax>1). This is the maximum condition number for (ccov).
  • inverse: [ {'yes'} | 'no' ] If set to 'yes' {default} the inverse covariance matrix is estimated. If set to 'no' the output (ccov) is a regularized covariance matrix.
  • sqrt: [ {'no'} | 'yes' ], governs if the output is sqrt of the cov.
  • algorithm: [ 2 ], regularization method where ac = S(1)/options.condmax

algorithm = 1: results.alpha = (ac./(ac+S))*ac ;

algorithm = 2: results.alpha = (ac^2./(ac^2+S.^2))*ac ;

algorithm = 3: results.alpha = ac*ones(1,length(S)) ;



Example

load nir_data
[ccov,results] = cov_cv(spec1);
axis([0 50 1e-8 1]), vline(results.ncomp), hline(results.s(1)/results.options.condmax)
title(['nir_data: 30x401 ',get(get(gca,'title'),'string')],'interpreter','none'), figfont

See Also

pls, preprocess