Cov cv: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Donal
(Created page with '===Purpose=== Estimation of a regularized inverse covariance matrix. For (x) M by N, COV_CV estimates a regularized inverse of x'*x/(M-1). If [V,S] = svd(x'*x/(M-1)), and S = …')
 
imported>Donal
Line 20: Line 20:
====Optional Inputs====
====Optional Inputs====


* '''options''' = structure array with the following fields:
* '''options''' = structure array with the following fields discussed below.


====Outputs====
====Outputs====

Revision as of 16:28, 2 September 2010

Purpose

Estimation of a regularized inverse covariance matrix.

For (x) M by N, COV_CV estimates a regularized inverse of x'*x/(M-1).

If [V,S] = svd(x'*x/(M-1)), and S = diag(S); then the regularized inverse takes the form V*diag(1./(S+alpha))*V'.

The 1 by N vector alpha is output in (results.alpha) [see options.algorithm].


Synopsis

[ccov,results] = cov_cv(x,options);

Inputs

  • x = X-block class "double" or "dataset".

Optional Inputs

  • options = structure array with the following fields discussed below.

Outputs

  • ccov = the regularized (inverse and/or sqrt) covariance.
  • results = a structure array with the following fields

Example

load nir_data
[ccov,results] = cov_cv(spec1);
axis([0 50 1e-8 1]), vline(results.ncomp), hline(results.s(1)/results.options.condmax)
title(['nir_data: 30x401 ',get(get(gca,'title'),'string')],'interpreter','none'), figfont

See Also

pls, preprocess