Normdf: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(Importing text file)
imported>Jeremy
(Importing text file)
Line 16: Line 16:
   
   


====INPUTS====
====Inputs====


* '''function''' =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
* '''function''' =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].

Revision as of 17:34, 3 September 2008

Purpose

Normal / Gaussian distribution.

Synopsis

prob = normdf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Normal distribution.

This distribution is used for many data types including physical attributes and sums of quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than the mean.


Inputs

  • function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
  • x = matrix in which the sample data is stored, in the interval (-inf,inf).
  • for function=quantile - matrix with values in the interval (0,1).
  • for function=random - vector indicating the size of the random matrix to create.
  • a = mode/location parameter (real).
  • b = scale parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.

Examples

Cumulative:

>> prob = normdf('c',[1.9600 2.5758])

ans =

   0.9750    0.9950

>> x = -5:.1:5;

>> plot(x,normdf('c',x,0,1)), vline([ 0 ; normdf('q',[0.975; 0.995],0,1)])

Density:

>> prob = normdf('d',[1.9600 2.5758],0,1)

ans =

   0.0584    0.0145

>> x = -5:.1:5;

>> plot(x,normdf('d',x,0,1)), vline([0; normdf('q',[0.975; 0.995],0,1)])

Quantile:

>>

ans =

   1.9600    2.5758

Random:

>> prob = normdf('r',[4 1],0,1)

ans =

  -0.4326
  -1.6656
   0.1253
   0.2877

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, paretodf, raydf, triangledf, unifdf, weibulldf