Laplacedf: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(Importing text file)
imported>Jeremy
No edit summary
Line 1: Line 1:
===Purpose===
===Purpose===


Line 13: Line 12:


This distribution is a symmetric distribution also known as the double exponential distribution. It is more peaked than the normal distribution Leptokurtic rather than mesokurtic means that it has a sharper peak at the mean in the density plot than a similar normal density
This distribution is a symmetric distribution also known as the double exponential distribution. It is more peaked than the normal distribution Leptokurtic rather than mesokurtic means that it has a sharper peak at the mean in the density plot than a similar normal density
 


====Inputs====
====Inputs====
Line 23: Line 18:


* '''x''' = matrix in which the sample data is stored, in the interval (0,1).  
* '''x''' = matrix in which the sample data is stored, in the interval (0,1).  
 
:: for function=quantile - matrix with values in the interval (0,1).
*  '''for''' function=quantile - matrix with values in the interval (0,1).
:: for function=random - vector indicating the size of the random matrix to create.
 
*  '''for''' function=random - vector indicating the size of the random matrix to create.


* '''a''' = scale parameter (real and positive).
* '''a''' = scale parameter (real and positive).
Line 38: Line 31:
===Examples===
===Examples===


====Cumulative:====
====Cumulative====
 
<pre>
>> prob = laplacedf('c',0.99,1,2)
>> prob = laplacedf('c',0.99,1,2)
prob =
prob =
     0.4975
     0.4975
>> x    = [0:0.1:10];
>> x    = [0:0.1:10];
>> plot(x,laplacedf('c',x,1,2),'b-',x,laplacedf('c',x,3,7),'r-')
>> plot(x,laplacedf('c',x,1,2),'b-',x,laplacedf('c',x,3,7),'r-')
 
</pre>
====Density:====
====Density====
 
<pre>
>> prob = laplacedf('d',0.99,1,1)
>> prob = laplacedf('d',0.99,1,1)
prob =
prob =
     0.4950
     0.4950
>> x    = [0:0.1:10];
>> x    = [0:0.1:10];
>> plot(x,laplacedf('d',x,2,1),'b-',x,laplacedf('d',x,0.5,1),'r-')
>> plot(x,laplacedf('d',x,2,1),'b-',x,laplacedf('d',x,0.5,1),'r-')
 
</pre>
====Quantile:====
====Quantile====
 
<pre>
>> prob = laplacedf('q',0.99,0.5,1)
>> prob = laplacedf('q',0.99,0.5,1)
prob =
prob =
     4.4120
     4.4120
</pre>
====Random====


====Random:====
<pre>>> prob = laplacedf('r',[4 1],2,1)
 
>> prob = laplacedf('r',[4 1],2,1)
 
ans =
ans =
     0.4549
     0.4549
     0.4638
     0.4638
     0.3426
     0.3426
     0.5011
     0.5011
</pre>


===See Also===
===See Also===


[[betadr]], [[cauchydf]], [[chidf]], [[expdf]], [[gammadf]], [[gumbeldf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]
[[betadf]], [[cauchydf]], [[chidf]], [[expdf]], [[gammadf]], [[gumbeldf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]

Revision as of 12:08, 9 October 2008

Purpose

Laplace distribution.

Synopsis

prob = laplacedf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Laplace distribution.

This distribution is a symmetric distribution also known as the double exponential distribution. It is more peaked than the normal distribution Leptokurtic rather than mesokurtic means that it has a sharper peak at the mean in the density plot than a similar normal density

Inputs

  • function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
  • x = matrix in which the sample data is stored, in the interval (0,1).
for function=quantile - matrix with values in the interval (0,1).
for function=random - vector indicating the size of the random matrix to create.
  • a = scale parameter (real and positive).
  • b = shape parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.

Examples

Cumulative

>> prob = laplacedf('c',0.99,1,2)
prob =
    0.4975
>> x    = [0:0.1:10];
>> plot(x,laplacedf('c',x,1,2),'b-',x,laplacedf('c',x,3,7),'r-')

Density

>> prob = laplacedf('d',0.99,1,1)
prob =
    0.4950
>> x    = [0:0.1:10];
>> plot(x,laplacedf('d',x,2,1),'b-',x,laplacedf('d',x,0.5,1),'r-')

Quantile

>> prob = laplacedf('q',0.99,0.5,1)
prob =
    4.4120

Random

>> prob = laplacedf('r',[4 1],2,1)
ans =
    0.4549
    0.4638
    0.3426
    0.5011

See Also

betadf, cauchydf, chidf, expdf, gammadf, gumbeldf, logisdf, lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf