Plsdaroc: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(Importing text file)
 
imported>Jeremy
(Importing text file)
Line 6: Line 6:
ROC curves can be used to assess the specificity and sensitivity possible with different predicted y-value thresholds for a PLSDA model. Inputs are a PLSDA model model, an optional index into the y-columns used in the model ycol [default = all columns], and an options structure. Output is a dataset with the sensitivity/specificity data roc.
ROC curves can be used to assess the specificity and sensitivity possible with different predicted y-value thresholds for a PLSDA model. Inputs are a PLSDA model model, an optional index into the y-columns used in the model ycol [default = all columns], and an options structure. Output is a dataset with the sensitivity/specificity data roc.
===Options===
===Options===
* plots :  [ 'none' | {'final'}]    governs plotting on/off  
* '''plots''' :  [ 'none' | {'final'}]    governs plotting on/off  
===See Also===
===See Also===
[[discrimprob]], [[plsda]], [[plsdthres]], [[simca]]
[[discrimprob]], [[plsda]], [[plsdthres]], [[simca]]

Revision as of 19:57, 2 September 2008

Purpose

Calculate and display ROC curves for PLSDA model.

Synopsis

roc = plsdaroc(model,ycol,options)

Description

ROC curves can be used to assess the specificity and sensitivity possible with different predicted y-value thresholds for a PLSDA model. Inputs are a PLSDA model model, an optional index into the y-columns used in the model ycol [default = all columns], and an options structure. Output is a dataset with the sensitivity/specificity data roc.

Options

  • plots : [ 'none' | {'final'}] governs plotting on/off

See Also

discrimprob, plsda, plsdthres, simca