Pcolormap: Difference between revisions
Jump to navigation
Jump to search
imported>Jeremy (Importing text file) |
imported>Jeremy (Importing text file) |
||
Line 10: | Line 10: | ||
If data is class "dataset" the I/O format is: | If data is class "dataset" the I/O format is: | ||
:pcolormap(data,maxdat,mindat) | :pcolormap(data,maxdat,mindat) | ||
====OPTIONAL INPUTS==== | |||
(xlbl) a character array with m rows of sample labels if empty no labels are included, if == 1 then xlbl = int2str([1:m]'); [xlbl = int2str([1:m]') used when size(xlbl,1)\~=m], | (xlbl) a character array with m rows of sample labels if empty no labels are included, if == 1 then xlbl = int2str([1:m]'); [xlbl = int2str([1:m]') used when size(xlbl,1)\~=m], | ||
(ylbl) a character array with n rows of variable labels if empty no labels are included, if ==1 then ylbl = int2str([1:n]'); [ylbl = int2str([1:n]') used when size(ylbl,1)\~=n], | (ylbl) a character array with n rows of variable labels if empty no labels are included, if ==1 then ylbl = int2str([1:n]'); [ylbl = int2str([1:n]') used when size(ylbl,1)\~=n], |
Revision as of 19:57, 2 September 2008
Purpose
Produces a pseudocolor map with labels.
Synopsis
- pcolormap(data,maxdat,mindat)
- pcolormap(data,xlbl,ylbl,maxdat,mindat)
Description
PCOLORMAP produces a pseudocolor map of the M by N input matrix data. If data is class "double" the I/O format is:
- pcolormap(data,xlbl,ylbl,maxdat,mindat)
If data is class "dataset" the I/O format is:
- pcolormap(data,maxdat,mindat)
OPTIONAL INPUTS
(xlbl) a character array with m rows of sample labels if empty no labels are included, if == 1 then xlbl = int2str([1:m]'); [xlbl = int2str([1:m]') used when size(xlbl,1)\~=m], (ylbl) a character array with n rows of variable labels if empty no labels are included, if ==1 then ylbl = int2str([1:n]'); [ylbl = int2str([1:n]') used when size(ylbl,1)\~=n], (maxdat) a user defined maximum for scaling the color scale {default = max(max(data))}, (mindat) a user defined minimum for scaling the color scale {default = min(min(data))}.