Mlr: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Mathias
imported>Benjamin
No edit summary
Line 40: Line 40:
* '''preprocessing''':  { [] [] } preprocessing structure (see PREPROCESS).
* '''preprocessing''':  { [] [] } preprocessing structure (see PREPROCESS).


* '''blockdetails''': [ 'compact' | {'standard'} | 'all' ]   Extent of predictions and raw residuals included in model. 'standard' = only y-block, 'all' x and y blocks.
* '''blockdetails''': [ 'compact' | {'standard'} | 'all' ] level of detail (predictions, raw residuals, and calibration data) included in the model.
:* ‘Compact’ - keep predictions, raw residuals and for y-block only (y-block included).
:* ‘Standard’ - the default setting for this model: ‘Compact’.
:* 'All' -  keep predictions, raw residuals for both x & y blocks as well as the x & y blocks themselves.


===See Also===
===See Also===


[[analysis]], [[crossval]], [[ils_esterror]], [[modelstruct]], [[pcr]], [[pls]], [[preprocess]], [[ridge]], [[testrobustness]]
[[analysis]], [[crossval]], [[ils_esterror]], [[modelstruct]], [[pcr]], [[pls]], [[preprocess]], [[ridge]], [[testrobustness]]

Revision as of 13:38, 26 July 2017

Purpose

Multiple Linear Regression for multivariate Y.

Synopsis

model = mlr(x,y,options)
pred = mlr(x,model,options)
valid = mlr(x,y,model,options)
mlr  % Launches analysis window with MLR as the selected method.

Description

MLR identifies models of the form Xb = y + e.

Inputs

  • y = X-block: predictor block (2-way array or DataSet Object)
  • y = Y-block: predictor block (2-way array or DataSet Object)

Outputs

  • model = scalar, estimate of filtered data.
  • pred = structure array with predictions
  • valid = structure array with predictions

Options

options = a structure array with the following fields.

  • display: [ {'off'} | 'on'] Governs screen display to command line.
  • plots: [ 'none' | {'final'} ] governs level of plotting.
  • ridge: [ 0 ] ridge parameter to use in regularizing the inverse.
  • preprocessing: { [] [] } preprocessing structure (see PREPROCESS).
  • blockdetails: [ 'compact' | {'standard'} | 'all' ] level of detail (predictions, raw residuals, and calibration data) included in the model.
  • ‘Compact’ - keep predictions, raw residuals and for y-block only (y-block included).
  • ‘Standard’ - the default setting for this model: ‘Compact’.
  • 'All' - keep predictions, raw residuals for both x & y blocks as well as the x & y blocks themselves.

See Also

analysis, crossval, ils_esterror, modelstruct, pcr, pls, preprocess, ridge, testrobustness