Cov cv: Difference between revisions
Jump to navigation
Jump to search
imported>Scott |
imported>Neal |
||
Line 83: | Line 83: | ||
===See Also=== | ===See Also=== | ||
[[pls]], [[preprocess]],[[stepwise_regrcls]] | [[pls]], [[preprocess]], [[stepwise_regrcls]] |
Latest revision as of 09:10, 29 September 2011
This page describes the 'cov_cv' function and its usage.
Purpose
Estimation of a regularized inverse covariance matrix.
For (x) M by N, COV_CV estimates a regularized inverse of x'*x/(M-1).
If [V,S] = svd(x'*x/(M-1)), and S = diag(S); then the regularized inverse takes the form V*diag(1./(S+alpha))*V'.
The 1 by N vector alpha is output in (results.alpha) [see options.algorithm].
Synopsis
- [ccov,results] = cov_cv(x,options);
Inputs
- x = X-block class "double" or "dataset".
Optional Inputs
- options = structure array with the following fields discussed below.
Outputs
- ccov = the regularized (inverse and/or sqrt) covariance.
- results = a structure array with the following fields
- cond = condition number of x'*x/(M-1) [before after] regularization.
- alpha = regularization parameters.
- sd = the regularized eigenvalues (or sqrt) of Cov(X).
- s = the eigenvalues (or sqrt) of Cov(X).
- ss = the variances (or std) of X.
- ncomp = number of facters at which S(1)/S = options.condmax (it can be a fraction).
- options = the input (options) structure.
Options
options = a structure array with the following fields:
- display: [ 'off' | {'on'} ], governs level of display to command window,
- plots: [ 'none' | {'final'} ], governs level of plotting.
- condmax: {1e4} maximum regularization (condmax>1). This is the maximum condition number for (ccov).
- inverse: [ {'yes'} | 'no' ] If set to 'yes' {default} the inverse covariance matrix is estimated. If set to 'no' the output (ccov) is a regularized covariance matrix.
- sqrt: [ {'no'} | 'yes' ], governs if the output is sqrt of the cov.
- algorithm: [ 2 ], regularization method where ac = S(1)/options.condmax
- algorithm = 1: results.alpha = (ac./(ac+S))*ac ;
- algorithm = 2: results.alpha = (ac^2./(ac^2+S.^2))*ac ;
- algorithm = 3: results.alpha = ac*ones(1,length(S)) ;
- preprocessing: { [1] } Controls preprocessing.
- Two methods can be used to control preprocessing.
- 1) For typical preprocessing methods use a scalar: 0 = none, {1 = mean centering, default}, or 2 = autoscaling.
- 2) For more varieties of preprocessing enter a cell array options.preprocessing = {pre} where pre is a standard preprocessing structure output by PREPROCESS.
- calccov: [ 'no' | {'yes'} ].
- If 'yes', it is assumed that the covariance matrix must first be calculated before estimating the inverse.
- If 'no', it is assumed that input (x) is already a covariance and the calculation is not performed. If 'no' options.preprocessing is set to 0.
Example
load nir_data [ccov,results] = cov_cv(spec1); axis([0 50 1e-8 1]), vline(results.ncomp), hline(results.s(1)/results.options.condmax) title(['nir_data: 30x401 ',get(get(gca,'title'),'string')],'interpreter','none'), figfont