Tsqqmtx: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(New page: ===Purpose=== Calculates matrix for T^2+Q contributions for PCA and MPCA. ===Synopsis=== :[tsqqmat,tsqqs] = tsqqmtx(x,model,wt) ===Description=== ====Inputs==== * '''x = data matrix [...)
 
imported>Scott
 
(One intermediate revision by one other user not shown)
Line 10: Line 10:


====Inputs====
====Inputs====
* '''x = data matrix [class double or dataset]
* '''x''' = data matrix [class double or dataset]
* '''model = PCA or MPCA model standard model struture (see PCA).
* '''model''' = PCA or MPCA model standard model struture (see PCA).
   
   
====Optional Inputs====
====Optional Inputs====
Line 25: Line 25:
===See Also===
===See Also===


[[datahat]], [[pca]], [[pcr]], [[pls]], [[tsqmtx]]
[[datahat]], [[pca]], [[pcr]], [[pls]], [[tconcalc]], [[tsqmtx]]

Latest revision as of 16:05, 21 September 2011

Purpose

Calculates matrix for T^2+Q contributions for PCA and MPCA.

Synopsis

[tsqqmat,tsqqs] = tsqqmtx(x,model,wt)

Description

Inputs

  • x = data matrix [class double or dataset]
  • model = PCA or MPCA model standard model struture (see PCA).

Optional Inputs

  • wt = {sqrt((M-K-1)/(M-1))}, 0<=wt<=1 scalar weighting for contributions 0<wt<1 gives combined T^2 and Q statistics where M is the number of calibration samples and K is the number of PCs.
wt = 1 gives T^2 and T^2 contributions
wt = 0 gives standarized Q residuals

Outputs

  • tsqqs = combined Hotelling's T^2 + Q residual
  • tsqqmat = matrix of individual variable contributions such that
tsqqs(i) = tsqqmat(i,:)*tsqqmat(i,:)';

See Also

datahat, pca, pcr, pls, tconcalc, tsqmtx