ToolboxPerformance: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Mathias
imported>Mathias
Line 12: Line 12:




All results were obtained by building models with synthetic random data and autoscaling for preprocessing. 





Revision as of 11:14, 13 September 2016

PLS_Toolbox Performance

The following performance results are for general comparison and expectation. Your own mileage may vary.


Performance Table
Matlab Versoin PLS_Toolbox Version Operating System System Description Data Description Algorithm Performance Result
2015a 8.1.1 OS X El Capitan 2.8 GHz Intel, 16 GB ram cell cell


All results were obtained by building models with synthetic random data and autoscaling for preprocessing.


PCA time in seconds required to build model

1000 variables 2000 variables 5000 variables
20000 samples 2 4.7 40
50000 samples 3.5 9 61


PCA memory requirements

1000 variables 2000 variables 5000 variables
20000 samples .2 GB 1 GB 3.5 GB
50000 samples 3.55 9 GB 61 GB



PCR time in seconds required to build model

1000 variables 2000 variables 5000 variables
20000 samples 3 6 44


50000 samples 5 12 71



PCR memory requirements

1000 variables 2000 variables 5000 variables
20000 samples .2 GB 1 4 GB


50000 samples .5 GB 4 GB 11


PLS time in seconds required to build model

1000 variables 2000 variables 5000 variables
20000 samples 3.3 8 43


50000 samples 8 18 98


PLS Memory requirements

100 variables 500 variables 1000 variables
100 samples 1 GB 2 GB 5 GB
500 samples 1.6 GB 5.2 GB 13 GB



LWR time in seconds required to build model

1000 variables 5000 variables 10000 variables
20000 samples 4 65 76
50000 samples 10 77 670


LWR memory requirements

1000 variables 2000 variables 5000 variables
20000 samples <1 GB 2 GB 3.5 GB
50000 samples .6 GB 3 GB 6.75 GB



ANN time in seconds required to build model

100 variables 500 variables 1000 variables
500 samples 6 28 95
1000 samples 10 370 360
2000 samples 12 550 2810 s

SVM time in seconds required to train model

100 variables 500 variables 2000 variables
100 samples 8 28 105
500 samples 150 640 2370
1000 samples


SVM with PCA compression time in seconds required to build model

100 variables 500 variables 1000 variables
100 samples 4 4 4
500 samples 38 38 38
1000 samples

SVM memory requirements

100 variables 500 variables 1000 variables
100 samples
500 samples
1000 samples