ToolboxPerformance: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Mathias
imported>Mathias
Line 24: Line 24:
| |'''20000 samples'''
| |'''20000 samples'''
||  2
||  2
||  4.7  
||  4.7  
||  40  
||  40  


|- valign="top"  
|- valign="top"  
| |'''50000 samples'''
| |'''50000 samples'''
||  3.5
||  3.5
||  9
||  9
||  61
||  61
|-
|-
|}
|}

Revision as of 11:07, 13 September 2016

PLS_Toolbox Performance

The following performance results are for general comparison and expectation. Your own mileage may vary.


Performance Table
Matlab Versoin PLS_Toolbox Version Operating System System Description Data Description Algorithm Performance Result
2015a 8.1.1 OS X El Capitan 2.8 GHz Intel, 16 GB ram cell cell



PCA time in seconds required to train model

1000 variables 2000 variables 5000 variables
20000 samples 2 4.7 40
50000 samples 3.5 9 61


PCA memory requirements

1000 variables 2000 variables 5000 variables
20000 samples .2 GB 1 GB 3.5 GB


50000 samples 3.55 9 GB 61 GB




PCR time in seconds required to train model

1000 variables 2000 variables 5000 variables
20000 samples 3 6 44


50000 samples 5 12 71



PCR memory requirements

1000 variables 2000 variables 5000 variables
20000 samples .2 GB 1 4 GB


50000 samples .5 GB 4 GB 11


PLS time in seconds required to train model

1000 variables 2000 variables 5000 variables
20000 samples 3.3 8 43


50000 samples 8 18 98



PLS Memory requirements

100 variables 500 variables 1000 variables
100 samples 1 GB 2 GB 5 GB


500 samples 1.6 GB 5.2 GB 13 GB





LWR time in seconds required to train model

1000 variables 5000 variables 10000 variables
20000 samples 4 65 76


50000 samples 10 77 670




LWR memory requirements

1000 variables 2000 variables 5000 variables
20000 samples <1 GB 2 GB 3.4 GB


50000 samples .6 GB 3 GB 6.75 GB




ANN time in seconds required to train model

100 variables 500 variables 1000 variables
500 samples 6 28 95


1000 samples 10 370 360


2000 samples 12 550 2810 s



SVM time in seconds required to train model

100 variables 500 variables 2000 variables
100 samples 8 28 105


500 samples 150 640 2370


1000 samples



SVM with PCA compression time in seconds required to train model

100 variables 500 variables 1000 variables
100 samples 4 4 4


500 samples 38 38 38


1000 samples


SVM memory requirements

100 variables 500 variables 1000 variables
100 samples


500 samples


1000 samples