Peaksigmoid: Difference between revisions
Jump to navigation
Jump to search
imported>Mathias |
imported>Mathias |
||
Line 27: | Line 27: | ||
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( {1}+{{x}_{2}} \right)}^{2}}+x_{3}^{2}} \right] \right]</math> | <math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( {1}+{{x}_{2}} \right)}^{2}}+x_{3}^{2}} \right] \right]</math> | ||
<math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( {1}+{{x}_{2}} \right) | <math>f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( {1}+{{x}_{2}} \right)}} \right] \right]</math> | ||
Revision as of 11:38, 4 August 2016
Purpose
Outputs a sigmoid function.
Synopsis
- [y,y1,y2] = peaksigmoid(x,ax)
Inputs
- x = 3 element vector where
- x(1) = coefficient
- x(2) = offset
- x(3) = decay constant
Outputs
Failed to parse (syntax error): {\displaystyle f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( {1}+{{x}_{2}} \right)}} \right] \right]}
Failed to parse (syntax error): {\displaystyle f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( \right)}+x_{3}^{2}} \right] \right]}
- y(1) =
- y(2) =
- y(3) =