Chidf: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(Importing text file)
imported>Jeremy
(Importing text file)
Line 1: Line 1:
===Purpose===
===Purpose===
Chi-squared distribution.
Chi-squared distribution.
===Synopsis===
===Synopsis===
:prob = chidf(function,x,a)
:prob = chidf(function,x,a)
===Description===
===Description===
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Chi-sqared distribution.  
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Chi-sqared distribution.  
The chi-squared distribution usually models data that are positive (such as the sum of physical measurements). With integer degrees of freedom parameter v, it is equal to the sum of v normally distributed variates. This toolbox does not require that the degrees of freedom be integral and will ignore negative values in a sample. Chi-squared distributions have variance equal to twice the mean.
The chi-squared distribution usually models data that are positive (such as the sum of physical measurements). With integer degrees of freedom parameter v, it is equal to the sum of v normally distributed variates. This toolbox does not require that the degrees of freedom be integral and will ignore negative values in a sample. Chi-squared distributions have variance equal to twice the mean.
   
   
====INPUTS====
====INPUTS====
* '''function''' =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
* '''function''' =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
* '''x''' = matrix in which the sample data is stored, in the interval (0,inf).  
* '''x''' = matrix in which the sample data is stored, in the interval (0,inf).  
*  '''for''' function=quantile - matrix with values in the interval (0,1).
*  '''for''' function=quantile - matrix with values in the interval (0,1).
*  '''for''' function=random - vector indicating the size of the random matrix to create.
*  '''for''' function=random - vector indicating the size of the random matrix to create.
* '''a''' = degrees of freedom parameter (positive integer).
* '''a''' = degrees of freedom parameter (positive integer).
'''Note''': If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.  
'''Note''': If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.  
'''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.
'''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.
===Examples===
===Examples===
====Cumulative:====
====Cumulative:====
>> prob = chidf('c',[3.7942 4.6052],2)
>> prob = chidf('c',[3.7942 4.6052],2)
prob =
prob =
     0.8500    0.9000
     0.8500    0.9000
>> x = 0:0.1:8;
>> x = 0:0.1:8;
>> plot(x,chidf('c',x,2),'b',x,chidf('c',x,0.5),'r')
>> plot(x,chidf('c',x,2),'b',x,chidf('c',x,0.5),'r')
====Density:====
====Density:====
>> prob = chidf('d',[3.7942 4.6052],2)
>> prob = chidf('d',[3.7942 4.6052],2)
prob =
prob =
     0.0750    0.0500
     0.0750    0.0500
>> x = 0:0.1:8;
>> x = 0:0.1:8;
>> plot(x,chidf('d',x,2),'b',x,chidf('d',x,0.5),'r')
>> plot(x,chidf('d',x,2),'b',x,chidf('d',x,0.5),'r')
====Quantile:====
====Quantile:====
>> prob = chidf('q',[0.85 0.9],2)
>> prob = chidf('q',[0.85 0.9],2)
prob =
prob =
     3.7942    4.6052
     3.7942    4.6052
====Random:====
====Random:====
>> prob = chidf('r',[4 1],2)
>> prob = chidf('r',[4 1],2)
prob =
prob =
     0.1023
     0.1023
     2.9295
     2.9295
     0.9990
     0.9990
     1.4432
     1.4432
===See Also===
===See Also===
[[betadr]], [[cauchydf]], [[expdf]], [[gammadf]], [[gumbeldf]], [[laplacedf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]
[[betadr]], [[cauchydf]], [[expdf]], [[gammadf]], [[gumbeldf]], [[laplacedf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]

Revision as of 15:24, 3 September 2008

Purpose

Chi-squared distribution.

Synopsis

prob = chidf(function,x,a)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Chi-sqared distribution.

The chi-squared distribution usually models data that are positive (such as the sum of physical measurements). With integer degrees of freedom parameter v, it is equal to the sum of v normally distributed variates. This toolbox does not require that the degrees of freedom be integral and will ignore negative values in a sample. Chi-squared distributions have variance equal to twice the mean.


INPUTS

  • function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
  • x = matrix in which the sample data is stored, in the interval (0,inf).
  • for function=quantile - matrix with values in the interval (0,1).
  • for function=random - vector indicating the size of the random matrix to create.
  • a = degrees of freedom parameter (positive integer).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.

Examples

Cumulative:

>> prob = chidf('c',[3.7942 4.6052],2)

prob =

   0.8500    0.9000

>> x = 0:0.1:8;

>> plot(x,chidf('c',x,2),'b',x,chidf('c',x,0.5),'r')

Density:

>> prob = chidf('d',[3.7942 4.6052],2)

prob =

   0.0750    0.0500

>> x = 0:0.1:8;

>> plot(x,chidf('d',x,2),'b',x,chidf('d',x,0.5),'r')

Quantile:

>> prob = chidf('q',[0.85 0.9],2)

prob =

    3.7942    4.6052

Random:

>> prob = chidf('r',[4 1],2)

prob =

   0.1023
   2.9295
   0.9990
   1.4432

See Also

betadr, cauchydf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf