Betadf: Difference between revisions
imported>Jeremy (Importing text file) |
imported>Bob |
||
(5 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
===Purpose=== | ===Purpose=== | ||
Line 14: | Line 13: | ||
This distribution is commonly used to model activity time. In its usual form, the data must be in (0,1), but this toolbox will allow both a location and scale parameter (in addition to the a and b above). This may be symmetric or asymmetric. | This distribution is commonly used to model activity time. In its usual form, the data must be in (0,1), but this toolbox will allow both a location and scale parameter (in addition to the a and b above). This may be symmetric or asymmetric. | ||
::<math>B(a,b) = \int_0 ^1 u^{a-1} (1-u)^{b-1} du</math> | |||
::<math>f(x) = \frac {x^{a-1}(1-x)^{b-1}} {B(a,b)}</math> | |||
==== | ====Inputs==== | ||
* '''function''' = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. | * '''function''' = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. | ||
Line 24: | Line 25: | ||
* '''x''' = matrix in which the sample data is stored, in the interval (0,1). | * '''x''' = matrix in which the sample data is stored, in the interval (0,1). | ||
::for function=quantile - matrix with values in the interval (0,1). | |||
::for function=random - vector indicating the size of the random matrix to create. | |||
* '''a''' = scale parameter (real and nonnegative). | * '''a''' = scale parameter (real and nonnegative). | ||
Line 50: | Line 51: | ||
===Examples=== | ===Examples=== | ||
===Cumulative | ====Cumulative==== | ||
<pre> | |||
>> prob = betadf('c', [0.85 0.9],1,2) | >> prob = betadf('c', [0.85 0.9],1,2) | ||
prob = | prob = | ||
0.9900 | |||
>> x = [0:0.01:1]; | >> x = [0:0.01:1]; | ||
>> plot(x,betadf('c',x,1,2),'b-',x,betadf('c',x,0.5,0.5),'r-') | >> plot(x,betadf('c',x,1,2),'b-',x,betadf('c',x,0.5,0.5),'r-') | ||
</pre> | |||
====Density | ====Density==== | ||
<pre> | |||
>> prob = betadf('d', 0.9, 1, 2) | >> prob = betadf('d', 0.9, 1, 2) | ||
prob = | prob = | ||
0.2000 | |||
0.2000 | |||
>> x = [0:0.01:1]; | >> x = [0:0.01:1]; | ||
>> plot(x,betadf('d',x,1,2),'b-',x,betadf('d',x,0.5,0.5),'r-') | >> plot(x,betadf('d',x,1,2),'b-',x,betadf('d',x,0.5,0.5),'r-') | ||
</pre> | |||
====Quantile | ====Quantile==== | ||
<pre> | |||
>> prob = betadf('q',[0.9775 0.9900]',1,2) | >> prob = betadf('q',[0.9775 0.9900]',1,2) | ||
prob = | prob = | ||
0.8500 | 0.8500 | ||
0.9000 | 0.9000 | ||
</pre> | |||
====Random | ====Random==== | ||
<pre> | |||
>> prob = betadf('r',[5 1],1,2) | >> prob = betadf('r',[5 1],1,2) | ||
prob = | prob = | ||
0.3791 | 0.3791 | ||
0.2549 | 0.2549 | ||
0.8169 | 0.8169 | ||
0.0216 | 0.0216 | ||
0.1516 | 0.1516 | ||
</pre> | |||
===See Also=== | ===See Also=== | ||
[[cauchydf]], [[chidf]], [[expdf]], [[gammadf]], [[gumbeldf]], [[laplacedf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]] |
Latest revision as of 04:51, 10 October 2008
Purpose
Beta distribution.
Synopsis
- prob = betadf(function,x,a,b,options)
Description
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Beta distribution.
This distribution is commonly used to model activity time. In its usual form, the data must be in (0,1), but this toolbox will allow both a location and scale parameter (in addition to the a and b above). This may be symmetric or asymmetric.
Inputs
- function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
- x = matrix in which the sample data is stored, in the interval (0,1).
- for function=quantile - matrix with values in the interval (0,1).
- for function=random - vector indicating the size of the random matrix to create.
- a = scale parameter (real and nonnegative).
- b = shape parameter (real and nonnegative).
Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.
Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.
Options
options is a structure array with the following fields:
- name: 'options', name indicating that this is an options structure,
- scale: {1}, scale for the ordinate, and
- offset: {0}, offset for the ordinate.
The default options structure can be retrieved using: options = betadf('options').
Examples
Cumulative
>> prob = betadf('c', [0.85 0.9],1,2) prob = 0.9900 >> x = [0:0.01:1]; >> plot(x,betadf('c',x,1,2),'b-',x,betadf('c',x,0.5,0.5),'r-')
Density
>> prob = betadf('d', 0.9, 1, 2) prob = 0.2000 >> x = [0:0.01:1]; >> plot(x,betadf('d',x,1,2),'b-',x,betadf('d',x,0.5,0.5),'r-')
Quantile
>> prob = betadf('q',[0.9775 0.9900]',1,2) prob = 0.8500 0.9000
Random
>> prob = betadf('r',[5 1],1,2) prob = 0.3791 0.2549 0.8169 0.0216 0.1516
See Also
cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf