Unifdf: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
No edit summary
imported>Bob
 
(One intermediate revision by one other user not shown)
Line 13: Line 13:
This distribution is used when all possible outcomes of an experiment are equally likely. The distribution is flat with no peak.
This distribution is used when all possible outcomes of an experiment are equally likely. The distribution is flat with no peak.




::<math> f(x) = \frac {1} {b-a}</math>
 
 
::<math>F(x) = \frac {x-a} {b-a}</math>
 
 


====Inputs====
====Inputs====
Line 32: Line 36:
'''Note''': If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.  
'''Note''': If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.  


'''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.  
'''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.


===Examples===
===Examples===


====Cumulative:====
====Cumulative====
<pre>
<pre>
>> prob = unifdf('c',1.5,1,2)
>> prob = unifdf('c',1.5,1,2)
Line 44: Line 48:
>> plot(x,unifdf('c',x,1,2),'b-',x,unifdf('c',x,3,7),'r-')
>> plot(x,unifdf('c',x,1,2),'b-',x,unifdf('c',x,3,7),'r-')
</pre>
</pre>
====Density:====
====Density====
<pre>
<pre>
>> prob = unifdf('d',1.5,1,2)
>> prob = unifdf('d',1.5,1,2)
Line 53: Line 57:
>> ylim([0 1])
>> ylim([0 1])
</pre>
</pre>
====Quantile:====
====Quantile====
<pre>
<pre>
>> prob = unifdf('q',0.5,1,2)
>> prob = unifdf('q',0.5,1,2)
Line 59: Line 63:
     1.5
     1.5
</pre>
</pre>
====Random:====
====Random====
<pre>
<pre>
>> prob = unifdf('r',[4 1],2,1)
>> prob = unifdf('r',[4 1],2,1)

Latest revision as of 13:15, 10 October 2008

Purpose

Uniform distribution.

Synopsis

prob = unifdf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Uniform distribution.

This distribution is used when all possible outcomes of an experiment are equally likely. The distribution is flat with no peak.




Inputs

  • function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
  • x = matrix in which the sample data is stored, in the interval (-inf,inf).
for function=quantile - matrix with values in the interval (0,1).
for function=random - vector indicating the size of the random matrix to create.
  • a = "min" parameter (real).
  • b = "max" parameter (real and >= min).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.

Examples

Cumulative

>> prob = unifdf('c',1.5,1,2)
prob =
    0.5000
>> x    = [0:0.1:10];
>> plot(x,unifdf('c',x,1,2),'b-',x,unifdf('c',x,3,7),'r-')

Density

>> prob = unifdf('d',1.5,1,2)
prob =
    1.0000
>> x    = [0:0.01:10];
>> plot(x,unifdf('d',x,1,3),'b-',x,unifdf('d',x,1,4),'r-')
>> ylim([0 1])

Quantile

>> prob = unifdf('q',0.5,1,2)
prob =
    1.5

Random

>> prob = unifdf('r',[4 1],2,1)
ans =
    1.9218
    1.7382
    1.1763
    1.4057

See Also

betadf, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, normdf, paretodf, raydf, triangledf, weibulldf