Triangledf: Difference between revisions
imported>Jeremy (Importing text file) |
imported>Jeremy (Importing text file) |
||
Line 18: | Line 18: | ||
==== | ====Inputs==== | ||
* '''function''' = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. | * '''function''' = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. |
Revision as of 16:35, 3 September 2008
Purpose
Triangle distribution.
Synopsis
- prob = triangledf(function,x,a,b,c)
Description
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Triangle distribution.
This distribution is usually used for rough models of data and is triangular in shape (hence the name).
Inputs
- function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
- x = matrix in which the sample data is stored (-inf,inf).
- quantile - interval (0,1).
- random - vector indicating the size of the random matrix to create.
- a = "min" parameter (real, <= mode).
- b = "max" parameter (real, >= mode).
- c = "mode" parameter (real, >= min and <=max).
Note: If inputs (x, a, b, and c) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.
Note: Functions will typically allow input values outside of the acceptable range to be passed but will convert them to NaN.
Examples
Cumulative:
>> prob = triangledf('c',2,1,3,2)
prob =
0.5000
>> x = [0:0.1:10];
>> plot(x,triangledf('c',x,1,3,2),'b-',x,triangledf('c',x,1,5,3),'r-')
Density:
>> prob = triangledf('d',2,1,3,2)
prob =
1.0000
>> x = [0:0.1:10];
>> plot(x,triangledf('d',x,0,3,0),'b-',x,triangledf('d',x,1,3,2),'r-')
Quantile:
>> prob = triangledf('q',0.5,1,3,2)
prob =
2.0000
Random:
>> prob = triangledf('r',[4 1],1,3,2)
ans =
2.2817
1.9431
2.1094
2.2585
See Also
betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, normdf, paretodf, raydf, unifdf, weibulldf