Tdf: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(Importing text file)
imported>Jeremy
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Purpose===
===Purpose===
Student's t distribution.
Student's t distribution.
===Synopsis===
===Synopsis===
:prob = tdf(function,x,a)
:prob = tdf(function,x,a)
===Description===
===Description===
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Student's t distribution.  
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Student's t distribution.  
====INPUTS====
 
====Inputs====
 
* '''function''' =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
* '''function''' =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
* '''x''' = matrix in which the sample data is stored, in the interval (0,1).  
* '''x''' = matrix in which the sample data is stored, in the interval (0,1).  
*  '''for''' function=quantile - matrix with values in the interval (0,1).
 
*  '''for''' function=random - vector indicating the size of the random matrix to create.
:: for function=quantile - matrix with values in the interval (0,1).
:: for function=random - vector indicating the size of the random matrix to create.
 
* '''a''' =  scale parameter (real)
* '''a''' =  scale parameter (real)
'''Note''': If inputs (x and a) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.  
'''Note''': If inputs (x and a) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.  
'''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.  
'''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.  
===See Also===
===See Also===
[[betadr]], [[cauchydf]], [[chidf]], [[expdf]], [[gammadf]], [[gumbeldf]], [[laplacedf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]
 
[[betadf]], [[cauchydf]], [[chidf]], [[expdf]], [[gammadf]], [[gumbeldf]], [[laplacedf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]

Latest revision as of 13:24, 9 October 2008

Purpose

Student's t distribution.

Synopsis

prob = tdf(function,x,a)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Student's t distribution.

Inputs

  • function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
  • x = matrix in which the sample data is stored, in the interval (0,1).
for function=quantile - matrix with values in the interval (0,1).
for function=random - vector indicating the size of the random matrix to create.
  • a = scale parameter (real)

Note: If inputs (x and a) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.

See Also

betadf, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf