Ridgecv: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Chuck
No edit summary
imported>Jeremy
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:
===Synopsis===
===Synopsis===


:[b,theta,cumpress] = ridge(x,y,thetamax,divs,split)
:[b,theta,cumpress] = ridgecv(x,y,thetamax,divs,split)


===Description===
===Description===


This function calculates a ridge regression model using a matching set of predictor variables (x-block) <tt>x</tt> and predicted variables (y-block) y, and uses cross-validation to determine the optimum value of the ridge parameter <tt>theta</tt>.  The maximum value of the ridge parameter to consider is given by <tt>thetamax</tt> (where 0 < thetamax).  
This function calculates a ridge regression model using a matching set of predictor variables (x-block) <tt>x</tt> and predicted variables (y-block) <tt>y</tt>, and uses cross-validation to determine the optimum value of the ridge parameter <tt>theta</tt>.  The maximum value of the ridge parameter to consider is given by <tt>thetamax</tt> (where 0 < thetamax).  


====Inputs====
====Inputs====
Line 15: Line 15:
* '''x''' = matrix of independent variables
* '''x''' = matrix of independent variables
* '''y''' = matching vector of dependent variables
* '''y''' = matching vector of dependent variables
* '''thetamax''' = maximum value of ride parameter <tt>theta</tt> to consider
* '''thetamax''' = maximum value of ridge parameter <tt>theta</tt> to consider
* '''divs''' = the number of values of <tt>theta</tt> to test
* '''divs''' = the number of values of <tt>theta</tt> to test
* '''split''' =  the number of times to split and test the data for cross-validation
* '''split''' =  the number of times to split and test the data for cross-validation

Latest revision as of 15:55, 22 February 2013

Purpose

Ridge regression with cross validation.

Synopsis

[b,theta,cumpress] = ridgecv(x,y,thetamax,divs,split)

Description

This function calculates a ridge regression model using a matching set of predictor variables (x-block) x and predicted variables (y-block) y, and uses cross-validation to determine the optimum value of the ridge parameter theta. The maximum value of the ridge parameter to consider is given by thetamax (where 0 < thetamax).

Inputs

  • x = matrix of independent variables
  • y = matching vector of dependent variables
  • thetamax = maximum value of ridge parameter theta to consider
  • divs = the number of values of theta to test
  • split = the number of times to split and test the data for cross-validation

Outputs

  • b = the regression column vector, at the optimal ridge parameter value
  • theta = the optimal ridge parameter value
  • cumpress = Predicted Residual Sum of Squares (PRESS) statistics for the cross-validation

Note: RIDGECV uses the venetian blinds cross-validation method.

See Also

crossval, pcr, pls, analysis, ridge