Gumbeldf: Difference between revisions

From Eigenvector Research Documentation Wiki
Jump to navigation Jump to search
imported>Jeremy
(Importing text file)
imported>Jeremy
No edit summary
Line 1: Line 1:
===Purpose===
===Purpose===


Line 13: Line 12:


This distribution is also known as the Type I extreme value distribution. It is an alternative to the Weibull distribution.
This distribution is also known as the Type I extreme value distribution. It is an alternative to the Weibull distribution.


====Inputs====
====Inputs====
Line 21: Line 18:


* '''x''' = matrix in which the sample data is stored, in the interval (-inf,inf).  
* '''x''' = matrix in which the sample data is stored, in the interval (-inf,inf).  
 
:: for function=quantile - matrix with values in the interval (0,1).
*  '''for''' function=quantile - matrix with values in the interval (0,1).
:: for function=random - vector indicating the size of the random matrix to create.
 
*  '''for''' function=random - vector indicating the size of the random matrix to create.


* '''a''' = mode/location parameter (real).
* '''a''' = mode/location parameter (real).
Line 36: Line 31:
===Examples===
===Examples===


====Cumulative:====
====Cumulative====
 
<pre>
>> prob = gumbeldf('c',0.99,0.5,1)
>> prob = gumbeldf('c',0.99,0.5,1)
prob =
prob =
     0.5419
     0.5419
>> x    = [0:0.1:10];
>> x    = [0:0.1:10];
>> plot(x,gumbeldf('c',x,2),'b-',x,gumbeldf('c',x,0.5),'r-')
>> plot(x,gumbeldf('c',x,2),'b-',x,gumbeldf('c',x,0.5),'r-')
 
</pre>
====Density:====
====Density====
 
<pre>
>> prob = gumbeldf('d',0.99,0.5,1)
>> prob = gumbeldf('d',0.99,0.5,1)
prob =
prob =
0.3320
0.3320
>> x    = [0:0.1:10];
>> x    = [0:0.1:10];
>> plot(x,gumbeldf('d',x,2),'b-',x,gumbeldf('d',x,0.5),'r-')
>> plot(x,gumbeldf('d',x,2),'b-',x,gumbeldf('d',x,0.5),'r-')
 
</pre>
====Quantile:====
====Quantile====
 
<pre>
>> prob = gumbeldf('q',0.99,0.5,1)
>> prob = gumbeldf('q',0.99,0.5,1)
prob =
prob =
    5.1001</pre>


    5.1001
====Random====
 
<pre>
====Random:====
 
>> prob = gumbeldf('r',[4 1],2,1)
>> prob = gumbeldf('r',[4 1],2,1)
ans =
ans =
     3.8437
     3.8437
     2.6508
     2.6508
     2.3566
     2.3566
     4.2479
     4.2479
 
</pre>
===See Also===
===See Also===


[[betadr]], [[cauchydf]], [[chidf]], [[expdf]], [[gammadf]], [[laplacedf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]
[[betadf]], [[cauchydf]], [[chidf]], [[expdf]], [[gammadf]], [[laplacedf]], [[logisdf]], [[lognormdf]], [[normdf]], [[paretodf]], [[raydf]], [[triangledf]], [[unifdf]], [[weibulldf]]

Revision as of 13:07, 9 October 2008

Purpose

Gumbel distribution.

Synopsis

prob = gumbeldf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Gumbel distribution.

This distribution is also known as the Type I extreme value distribution. It is an alternative to the Weibull distribution.

Inputs

  • function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
  • x = matrix in which the sample data is stored, in the interval (-inf,inf).
for function=quantile - matrix with values in the interval (0,1).
for function=random - vector indicating the size of the random matrix to create.
  • a = mode/location parameter (real).
  • b = scale parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.

Examples

Cumulative

>> prob = gumbeldf('c',0.99,0.5,1)
prob =
    0.5419
>> x    = [0:0.1:10];
>> plot(x,gumbeldf('c',x,2),'b-',x,gumbeldf('c',x,0.5),'r-')

Density

>> prob = gumbeldf('d',0.99,0.5,1)
prob =
0.3320
>> x    = [0:0.1:10];
>> plot(x,gumbeldf('d',x,2),'b-',x,gumbeldf('d',x,0.5),'r-')

Quantile

>> prob = gumbeldf('q',0.99,0.5,1)
prob =
    5.1001

Random

>> prob = gumbeldf('r',[4 1],2,1)
ans =
    3.8437
    2.6508
    2.3566
    4.2479

See Also

betadf, cauchydf, chidf, expdf, gammadf, laplacedf, logisdf, lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf